A Reinforcement Learning Approach to Setting Multi-Objective Goals for Energy Demand Management
نویسندگان
چکیده
In order to cope with the unpredictability of the energy market and provide rapid response when supply is strained by demand, an emerging technology, called energy demand management, enables appliances to manage and defer their electricity consumption when price soars. Initial experiments with our multi-agent, power load management simulator, showed a marked reduction in energy consumption when price-based constraints were imposed on the system. However, these results also revealed an unforeseen, negative effect: that reducing consumption for a bounded time interval decreases system stability. The reason is that price-driven control synchronizes the energy consumption of individual agents. Hence price, alone, is an insufficient measure to define global goals in a power load management system. In this article we explore the effectiveness of a multi-objective, system-level goal which combines both price and system stability. We apply the commonly known reinforcement learning framework, enabling the energy distribution system to be both cost saving and stable. [Article copies are available for purchase from InfoSci-on-Demand.com]
منابع مشابه
A Multi-Agent Machine Learning Framework for Intelligent Energy Demand Management
In order to cope with the unpredictability of the energy market and provide rapid response when supply is strained by demand, an emerging technology, called energy demand management, enables appliances to manage and defer their electricity consumption when price soars. Initial experiments with our multiagent, power load management simulator, showed a marked reduction in energy consumption when ...
متن کاملLow-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach
This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...
متن کاملManaging Power Flows in Microgrids Using Multi-Agent Reinforcement Learning
Smart Microgrids bring numerous challenges, including how to leverage the potential benefits of renewable energy sources while maintaining acceptable levels of reliability in the power infrastructure. One way to tackle this challenging problem is to use intelligent storage systems (batteries and supercapacitors). Charging and discharging them at the proper time by exploiting the variablity of t...
متن کاملFuzzy Adaptive Granulation Multi-Objective Multi-microgrid Energy Management
This paper develops an energy management approach for a multi-microgrid (MMG) taking into account multiple objectives involving plug-in electric vehicle (PEV), photovoltaic (PV) power, and a distribution static compensator (DSTATCOM) to improve power provision sharing. In the proposed approach, there is a pool of fuzzy microgrids granules that they compete with each other to prolong their lives...
متن کاملBidding Strategy on Demand Side Using Eligibility Traces Algorithm
Restructuring in the power industry is followed by splitting different parts and creating a competition between purchasing and selling sections. As a consequence, through an active participation in the energy market, the service provider companies and large consumers create a context for overcoming the problems resulted from lack of demand side participation in the market. The most prominent ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJATS
دوره 1 شماره
صفحات -
تاریخ انتشار 2009